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F — any field; I — any group (or affine group scheme)

V' — any finite dimensional representation of I over F

V=V @V®...Q V (ntimes)

ven — @f’;(lv) W; where W; are indecomposable '—modules

Question: What can we say about sequence b,(V)? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)
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Tensor powers

F — any field; I — any group (or affine group scheme)

V' — any finite dimensional representation of I over F
VE"=V®V®...® V (n times)

von — @f’;(lv) W; where W; are indecomposable '—modules

Question: What can we say about sequence b,(V)? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

lim /bn(V) = dim(V)

n—o00

Example

| \

[ finite, F = C, M = max{x(1) | x — irreducible complex character}
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Tensor powers

F — any field; I — any group (or affine group scheme)

V' — any finite dimensional representation of I over F
VE"=V®V®...® V (n times)

von — @b”(v) W; where W; are indecomposable '—modules

i=1

Question: What can we say about sequence b,(V)? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

lim /bn(V) = dim(V)

n—o00

| \

Example
[ finite, F = C, M = max{x(1) | x — irreducible complex character}

%dim(v)n < by(V) < dim(VE") = dim(V)"
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Example
I" finite, F of characteristic p > 0
Then T typically has indecomposable representations of arbitrarily large

dimension
However I has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then V®"
contain a projective sumand for n > 0.
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Example

I" finite, F of characteristic p > 0

Then T typically has indecomposable representations of arbitrarily large
dimension

However I has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then V®"
contain a projective sumand for n > 0.

Corollary Almost all summands of V" are projective over the image of I’
in GL(V) (i.e. dimension of all non-projective summands in V®" is less
than Kr” where r < dim(V) and K > 0).
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I" finite, F of characteristic p > 0

Then T typically has indecomposable representations of arbitrarily large
dimension

However I has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then V®"
contain a projective sumand for n > 0.

Corollary Almost all summands of V" are projective over the image of I’
in GL(V) (i.e. dimension of all non-projective summands in V®" is less
than Kr” where r < dim(V) and K > 0).
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Finite groups: modular case

Example

I" finite, F of characteristic p > 0

Then T typically has indecomposable representations of arbitrarily large
dimension

However I has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then V®"
contain a projective sumand for n > 0.

Corollary Almost all summands of V" are projective over the image of I’
in GL(V) (i.e. dimension of all non-projective summands in V®" is less
than Kr” where r < dim(V) and K > 0).

M = max{dim(P) | P — PIM for image of [ in GL(V)}

%(dim(V)” — Kr") < bp(V) < dim(V)"

Victor Ostrik (U of O) Growth in tensor powers March 11 3/16




Limit points
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might fail to exist.

F=C, T = Dg, V - 2-dimensional irreducible

dim(V)" — Lor % depending on parity of n

However, for I finite and F arbitrary we have:

@ the sequence dﬁ:(&%n has finitely many limit points

@ all the limit points are positive and depend only on
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Limit points

Remark: Even for F = C, I finite the limit
b,(V
lim (V)

n—oo dim( V)"

might fail to exist.

F=C, T = Dg, V - 2-dimensional irreducible

dim(V)" — Lor % depending on parity of n

However, for I finite and F arbitrary we have:

@ the sequence dﬁ:(&%n has finitely many limit points

@ all the limit points are positive and depend only on
Ker(V)C Ker(Ve V*)CT
@ there exists M € Z~q such that for any r =0,1,... M — 1 the
subsequence {%}E, (mod M) converges
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F=C, T =S5L(2), V - tautological 2-dimensional representation
ch(V)=q+qgt ch(VE) =(q+q )"

bn<v>:([g])N 20 _ [2dim(v)

T™n/2 T nl/?

Example
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SL(2): characteristic zero

F=C, T =S5L(2), V - tautological 2-dimensional representation
ch(V)=q+qgt ch(VE) =(q+q )"

dlm

P V)= ([ )~ W -

Example

F=CT= SL( ), Vo —irreducible 3-dimensional representation
ch(Vo) = ¢* +1+4¢72 ch(Vy"") = (¢* +1+q72)"

3"

b(Vs) = free term of (g? _YE

(CLT)

Generalization (P. Biane (1993) et al):
[ reductive over F = C: by(V) ~ K(V) 200" where b = |R,.| integer
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Growth knows about

Assume (a) F = C (b) I is algebraic group and Ig is a torus (~ (C*)")
Representations of ' are completely reducible

If V is irreducible then dim(V) < |mo(I)| (Frobenius reciprocity)

Hence b,(V) > r)| dim(V)"

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F = 0 and there is K > 0 such that b,(V) > Kdim(V)".
Then Zariski closure of the image of I' in GL(V) is a finite group extended
by torus. Equivalently, I D g such that [I" : Ty] < oo and the image of Ty
consists of simultaneously diagonalizable matrices.
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Assume (a) F = C (b) I is algebraic group and Ig is a torus (~ (C*)")
Representations of ' are completely reducible

If V is irreducible then dim(V) < |mo(I)| (Frobenius reciprocity)

Hence b,(V) > r)| dim(V)"

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F = 0 and there is K > 0 such that b,(V) > Kdim(V)".
Then Zariski closure of the image of I' in GL(V) is a finite group extended
by torus. Equivalently, I D g such that [I" : Ty] < oo and the image of Ty
consists of simultaneously diagonalizable matrices.

This can be improved: the inequality b,(V) > K dim(V)" can be replaced
by b,(V) > Kw for any a < 1.
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Growth knows about

Assume (a) F = C (b) I is algebraic group and Ig is a torus (~ (C*)")
Representations of ' are completely reducible

If V is irreducible then dim(V) < |mo(I)| (Frobenius reciprocity)

Hence b,(V) > r)| dim(V)"

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F = 0 and there is K > 0 such that b,(V) > Kdim(V)".
Then Zariski closure of the image of I' in GL(V) is a finite group extended
by torus. Equivalently, I D g such that [I" : Ty] < oo and the image of Ty
consists of simultaneously diagonalizable matrices.

This can be improved: the inequality b,(V) > K dim(V)" can be replaced
by b,(V) > Kw for any a < 1.
Question: What about char F > 07
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V®n - direct sum of tilting SL(2)—modules
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SL(2): modular case

char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’H%T"p < bp(V) < K”,?T"p for some ap and K/, K” >0
where ap = 0.7075, oz =~ 0.6845
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V®n - direct sum of tilting SL(2)—modules
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SL(2): modular case

char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’'-2% < b,(V) < K” -2 for some a, and K/, K" >0
where ap =~ 0.7075, a3 ~ 0.6845

Conjecture (P. Etingof): K'-25 < b,(V) < K”-2 for some K/, K" >0
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SL(2): modular case

char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’'-2% < b,(V) < K” -2 for some a, and K/, K" >0
where ap =~ 0.7075, a3 ~ 0.6845

Conjecture (P. Etingof): K'-25 < b,(V) < K”-2 for some K/, K" >0
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SL(2): modular case

char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’'-2% < b,(V) < K” -2 for some a, and K/, K" >0
where ap =~ 0.7075, a3 ~ 0.6845
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char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’'-2% < b,(V) < K” -2 for some a, and K/, K" >0
where ap =~ 0.7075, a3 ~ 0.6845

Conjecture (P. Etingof): K'-25 < b,(V) < K”-2 for some K/, K" >0

8 I 9 1 2p?
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SL(2): modular case

char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’'-2% < b,(V) < K” -2 for some a, and K/, K" >0
where ap =~ 0.7075, a3 ~ 0.6845

Conjecture (P. Etingof): K'-25 < b,(V) < K”-2 for some K/, K" >0

1,8 _1I 9 _1I 202
2= 510823 @43 = 510835 = 5%

however b,(V) # Kn%:p

Question: What about other representations of SL(2)?
Is the exponent «a, universal?
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SL(2): modular case

char F=p >0, = SL(2), V — tautological 2-dimensional representation
V®n - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of b,(V/)
Numerically: K’'-2% < b,(V) < K” -2 for some a, and K/, K" >0
where ap =~ 0.7075, a3 ~ 0.6845

Conjecture (P. Etingof): K'-25 < b,(V) < K”-2 for some K/, K" >0

1,8 _1I 9 _1I 202
2= 510823 @43 = 510835 = 5%

however b,(V) # Kn%:p

Question: What about other representations of SL(2)?
Is the exponent «a, universal?
Question What about other groups? e.g. SL(3)7
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Few words about proof

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0
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lim +/bp(V) =dim(V)
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Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
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For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0

Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
Hence we can assume I' = GL(V) (done if char F = 0!)

Step 2: GL(V)—module V®" is a direct sum of tilting modules,

so it is determined by its character
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Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0

Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
Hence we can assume I' = GL(V) (done if char F = 0!)

Step 2: GL(V)—module V®" is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for
dim(V) > 3 (conjecture by Lusztig-Williamson for dim(V) = 3)
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For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0

Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
Hence we can assume I' = GL(V) (done if char F = 0!)

Step 2: GL(V)—module V®" is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for
dim(V) > 3 (conjecture by Lusztig-Williamson for dim(V) = 3)

Use partial information (block of Steinberg module)...
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Few words about proof

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0

Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
Hence we can assume I' = GL(V) (done if char F = 0!)

Step 2: GL(V)—module V®" is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for
dim(V) > 3 (conjecture by Lusztig-Williamson for dim(V) = 3)

Use partial information (block of Steinberg module)...

Remark: I can be Lie algebra, semigroup, super group or super Lie
algebra, quantum group at root of 1
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Few words about proof

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0

Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
Hence we can assume I' = GL(V) (done if char F = 0!)

Step 2: GL(V)—module V®" is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for
dim(V) > 3 (conjecture by Lusztig-Williamson for dim(V) = 3)

Use partial information (block of Steinberg module)...

Remark: I can be Lie algebra, semigroup, super group or super Lie
algebra, quantum group at root of 1

Also V can be an object of a Tannakian category
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Few words about proof

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group T, field F, representation V we have

lim +/bp(V) =dim(V)

n—o0

Step 1: Clearly b,(V) < dim(V)" so we need a lower bound for b,(V)
Hence we can assume I' = GL(V) (done if char F = 0!)

Step 2: GL(V)—module V®" is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for
dim(V) > 3 (conjecture by Lusztig-Williamson for dim(V) = 3)

Use partial information (block of Steinberg module)...

Remark: I can be Lie algebra, semigroup, super group or super Lie
algebra, quantum group at root of 1

Also V can be an object of a Tannakian category

Warning: counterexamples for comodules over Hopf algebras
Victor Ostrik (U of O) Growth in tensor powers March 11 8 /16
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D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"

(V) = lim eV
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

@ The limit exists! but difficult to compute...
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D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

@ The limit exists! but difficult to compute...
@ (V) is not necessarily an integer
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

@ The limit exists! but difficult to compute...
@ (V) is not necessarily an integer
e 0 <v(V)<dim(V), v(V)=0<« Vis projective
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

@ The limit exists! but difficult to compute...

@ (V) is not necessarily an integer

e 0 <v(V)<dim(V), v(V)=0<« Vis projective
0 (V) >0=17(V) =1, (V) >1=~(V)>V2
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

The limit exists! but difficult to compute...

~v(V) is not necessarily an integer

0 <4(V) <dim(V), y(V) =0« Vis projective
NV)>0=9(V)>1, 4(V)>1=19(V) > V2
Conjecture: (V) is an algebraic integer
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

The limit exists! but difficult to compute...

~v(V) is not necessarily an integer

0 <4(V) <dim(V), y(V) =0« Vis projective
NV)>0=9(V)>1, 4(V)>1=19(V) > V2
Conjecture: (V) is an algebraic integer

(Ve W) #~(V)+ (W) in general
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

The limit exists! but difficult to compute...

~v(V) is not necessarily an integer

0 <4(V) <dim(V), y(V) =0« Vis projective
NV)>0=9(V)>1, 4(V)>1=19(V) > V2
Conjecture: (V) is an algebraic integer

(Ve W) #~(V)+ (W) in general

(V@ W) # ~(V)y(W) in general
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"

(V) = ven(V)

= lim
n—o0

The limit exists! but difficult to compute...

~v(V) is not necessarily an integer

0 <4(V) <dim(V), y(V) =0« Vis projective
V) >0=y(V)>1, (V) >1=7(V)>V2
Conjecture: (V) is an algebraic integer

(Ve W) #~(V)+ (W) in general

(V@ W) # ~(V)y(W) in general

Consider ¢/, (V) = number of non-projective summands in V®"
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"

(V) = ven(V)

= lim
n—o0

The limit exists! but difficult to compute...

~v(V) is not necessarily an integer

0 <4(V) <dim(V), y(V) =0« Vis projective
V) >0=y(V)>1, (V) >1=7(V)>V2
Conjecture: (V) is an algebraic integer

(Ve W) #~(V)+ (W) in general

(V@ W) # ~(V)y(W) in general

Consider ¢/, (V) = number of non-projective summands in V®"

and define 7/(V) = limp_00 {/c4(V)
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Other counts: non-projective summands

D. Benson, P. Symonds: T finite, char F=p >0

¢n(V) = total dimension of non-projective summands in V®"
Y(V) = lim /cp(V)
n—o0

The limit exists! but difficult to compute...

~v(V) is not necessarily an integer

0 <4(V) <dim(V), y(V) =0« Vis projective
V) >0=y(V)>1, (V) >1=7(V)>V2
Conjecture: (V) is an algebraic integer

(Ve W) #~(V)+ (W) in general

(V@ W) # ~(V)y(W) in general

Consider ¢/, (V) = number of non-projective summands in V®"

and define 7/(V) = limp_00 {/c4(V)
e Open True/False question: is v(V) = +/(V) for all V?
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[ =Z/5Z, p =75, representation: 1+ A, A° =Id < (A—1d)°> =0
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[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0

Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

110
J:il= 01 1
0 01
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0

Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
J:il= 01 1
0 01

J1 is trivial and the only simple
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[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0

Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || s @ Js = 3Us
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || s @ Js = 3Us

Take V = J3 and let V" = A,y + B,Js + CyJs
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || Js @ Js = 3Us |

Take V = J3 and let V" = A,y + B,Js + CyJs

Then |Ans1 = By (s0 Ay = By 1) [ Bay1 = An + By

Cn+1 =B, + 3Cn
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || Js @ Js = 3Us |

Take V = J3 and let V" = A,y + B,Js + CyJs

Then |Ans1 = By (s0 Ay = By 1) [ Bay1 = An + By

Hence Bpy1 = By—1 + By = F, = c,(V) (Fibonacci number)

Cn+1 =B, + 3Cn
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || Js @ Js = 3Us |

Take V = J3 and let V" = A,y + B,Js + CyJs

Then |Ans1 = By (s0 Ay = By 1) [ Bay1 = An + By

Hence Bpy1 = By—1 + B, = F, = c,(V) (Fibonacci number) and
cn(V) = A, + 3B, = B2 + B, (Lucas number)

Cn+1 =B, + 3Cn

Victor Ostrik (U of O) Growth in tensor powers March 11 10 / 16



Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || Js @ Js = 3Us |

Take V = J3 and let V" = A,y + B,Js + CyJs

Then |Ans1 = By (s0 Ay = By 1) [ Bay1 = An + By

Hence Bpy1 = By—1 + B, = F, = c,(V) (Fibonacci number) and
cn(V) = An + 3B, = Bpyo + By (Lucas number)= ~(V) = 1+—2‘/§

Cn+1 =B, + 3Cn
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || Js @ Js = 3Us |

Take V = J3 and let V" = A,y + B,Js + CyJs

Then |Ans1 = By (s0 Ay = By 1) [ Bay1 = An + By

Hence Bpy1 = By—1 + B, = F, = c,(V) (Fibonacci number) and
cn(V) = An + 3B, = Bpyo + By (Lucas number)= ~(V) = 1+—2‘/§: (V)

Cn+1 =B, + 3Cn

V.
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Example

[ =7/57Z, p =5, representation: 1+ A, A’ =Id < (A—1d)°> =0
Indecomposable representations: Jordan cells Ji, b, J3, Js, J5

1 10
Sl 01 1
0 01

J1 is trivial and the only simple
Js is the only projective

Tensor products: | 4 ® Ji = Ji|[ s ® Js = J1 + Js + J5 || Js @ Js = 3Us |

Take V = J3 and let V" = A,y + B,J3 + CpJs

Then |Ans1 = By (s0 Ay = By 1) [ Bay1 = An + By

Hence Bpy1 = By—1 + B, = F, = c,(V) (Fibonacci number) and
cn(V) = An + 3B, = Bpyo + By (Lucas number)= ~(V) = 1+—2‘/§: (V)

Cn+1 =B, + 3Cn

V.

Exercise. Compute v(J2) and ~y(Js) (of course y(J1) =1 and v(Js5) = 0)
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,
d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,
d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p > 0, V®" = @{)”(V) 1%

i=1 i
d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete’'s Lemma implies that | §(V) := Ii_)m v dn(V)
n—oo

exists
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Other counts: non-negligible summands

b(V) |y

i=1 !
d,(V) = total number of summands W; in V®" with dim(W;) #0 € F

Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete’s Lemma implies that | 6(V) := Ii_)m V/ dn(V) | exists
n—oo

Assume F is algebraically closed, char F = p >0, V®" = P

W — indecomposable representation of a group I (or super group scheme)
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,

d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete’s Lemma implies that | 6(V) := Ii_)m V/ dn(V) | exists
n—oo

W — indecomposable representation of a group I (or super group scheme)

Definition

W is negligible if dim(W) =0 € F (take sdim(W) for super groups)
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,

d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete’s Lemma implies that | 6(V) := Ii_)m V/ dn(V) | exists
n—oo

W — indecomposable representation of a group I (or super group scheme)

Definition

W is negligible if dim(W) =0 € F (take sdim(W) for super groups)
W is non-negligible if dim(W) #0 € F
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,

d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete’s Lemma implies that | 6(V) := Ii_)m V/ dn(V) | exists
n—oo

W — indecomposable representation of a group I (or super group scheme)

Definition

W is negligible if dim(W) =0 € F (take sdim(W) for super groups)
W is non-negligible if dim(W) #0 € F

More generally, (possibly decomposable) W is negligible if every
indecomposable summand is negligible
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,

d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete’s Lemma implies that | 6(V) := Ii_)m V/ dn(V) | exists
n—oo

W — indecomposable representation of a group I (or super group scheme)

Definition

W is negligible if dim(W) =0 € F (take sdim(W) for super groups)
W is non-negligible if dim(W) #0 € F

More generally, (possibly decomposable) W is negligible if every
indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p >0, V®" = @f;(lv) W,

d,(V) = total number of summands W; in V®" with dim(W;) #0 € F
Observation: dnim(V) > dp(V)dm(V) and dp(V) < dim(V)"

Fekete's Lemma implies that | (V) := Ii_)m V/ dn(V) | exists
n—oo

W — indecomposable representation of a group I (or super group scheme)

Definition

W is negligible if dim(W) =0 € F (take sdim(W) for super groups)
W is non-negligible if dim(W) #0 € F

More generally, (possibly decomposable) W is negligible if every
indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal

dn(V) = total number of non-negligible summands in V®”"
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Properties of

Obvious properties:
e (Ve W)>4V)+ W)
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Properties of

Obvious properties:
e (Ve W)>4V)+ W)
° (Ve W)>46(V)(W)
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Properties of

Obvious properties:
e (Ve W)>o(V)+ (W)
e (Ve W)>4V)(W)
e §(V) =0« Vis negligible
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Properties of

Obvious properties:

(Ve W)>4V)+s(W)

Ve W)>4§V)(W)

V) =0<« V is negligible
V)>0=1<4§(V)<dim(V)

o
o
o
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Properties of

Obvious properties:

e (Ve W)>4V)+ W)
Ve W)>o6(V)(W)
V) =0<« V is negligible
4

e o
e o
e J(V)>0=1<4(V)<dim(V)

Theorem (K. Coulembier, P. Etingof, V. O.)

1 5(Ve W) =5(V)+6(W) and 5(V & W) = 5(V)5(W).
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Properties of

Obvious properties:
° 6(V@ W) > 6(V)+d(W)
(Ve W)>s(V)s(W)
0(V) =0« V is negligible
(V) >0=1<4§(V) <dim(V)

Theorem (K. Coulembier, P. Etingof, V. O.)

1. (Ve W)= 6( /) + (W) and 6(V @ W) = 6(V)5(W).

2 Letq=gqp= er and [m]q = qq_;’,lm =q" '4+.. . 4+q"" formeN.
Then 6(V') = linear combination of [m]q,1 < m < & with nonnegative
integer coefficients.
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Properties of

Obvious properties:
° 6(V@ W) > 6(V)+d(W)
(Ve W)>s(V)s(W)
0(V) =0« V is negligible
(V) >0=1<4§(V) <dim(V)

Theorem (K. Coulembier, P. Etingof, V. O.)

1. o(Ve W) —6( /) + (W) and 6(V @ W) = 6(V)5(W).
_‘-'I_—qm_qml_l_ +q1mformEN
Then 6(V') = linear combination of [m]q,1 < m < & with nonnegative
integer coefficients.

2. Letq—qp—eP and [m]q

| A\

Example

For p =2 or p = 3 we say that (V) € Z>o

v
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Properties of

Obvious properties:
° 6(V@ W) > 6(V)+d(W)
(Ve W)>s(V)s(W)
0(V) =0« V is negligible
(V) >0=1<4§(V) <dim(V)

Theorem (K. Coulembier, P. Etingof, V. O.)

1. 5(V®W)—5( /) + (W) and 6(V @ W) = 6(V)5(W).
" — g™ 14 4+ g™ form e N.

Then 6(V') = linear combination of [m]q,1 < m < & with nonnegative
integer coefficients.

2. Letq—qp—eP and [m]g = =4

| A\

Example

For p =2 or p = 3 we say that (V) € Z>o

For p=5, 8(V) = a+ b1/ where a, b € Zx (since [2]g, = 155)

v
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r V | dim(V) | v(V) | 6(V) dn(V) note
z/5z]5] k| 3 |BE|1S Fr = (V)
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r V | dim(V) | v(V) | 6(V) dn(V) note
z/5z]5] k| 3 |BE|1S Fr = (V)
Z/8Z| 2| Js| 5 3 1 1
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r p|V |dim(V)|~(V)]| V) dn(V) note
z/5z]5] k| 3 |BE|1S Fa = ch(V)
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r p|V |dim(V)|~(V)]| V) dn(V) note
z/5z]5] k| 3 |BE|1S Fa = cp(V)
Z/8Z|2|Js| 5 3 1 1
Z/9Z |3 | Js 5 3 2 |31+ (=1)") | = dn(Ws,)

Ws, - 2-dimensional representation of S3 over C

v

Assume p =2 and dim(V) =3 or p =3 and dim(V) =2
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r p|V |dim(V)|~(V)]| V) dn(V) note
z/5z]5] k| 3 |BE|1S Fa = cp(V)
Z/8Z |2 )| 5 3 1 1
Z/9Z |3 | Js 5 3 2 |31+ (=1)") | = dn(Ws,)

Ws, - 2-dimensional representation of S3 over C

Assume p =2 and dim(V) =3 or p =3 and dim(V) =2

Then exactly one of the following is true:
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r | p| V[dim(V)|~y(V)| V) dn(V) note
Z/SZ|5 || 3 |15 1S Fr — ci(V)
ZJ/8Z|2|Js| 5 3 1 1
Z/9Z |3 | Js 5 3 2 |31+ (=1)") | = dn(Ws,)

Ws, - 2-dimensional representation of S3 over C

Assume p =2 and dim(V) =3 or p =3 and dim(V) =2

Then exactly one of the following is true:

(a) all summands of V®" are non-negligible for all n

(b) exactly one summand of each V®" is non-negligible for all n
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r (p|V[dm(V)|~vV)]| V) dn(V) note
Z/SZ|5 || 3 |15 1S Fr = cp(V)
Z/8Z (2] Js| 5 3 1 1
Z/9Z |3 | Js 5 3 2 [ 1™+ (=1)") | = da(Ws,)

Ws, - 2-dimensional representation of S3 over C

Assume p =2 and dim(V) =3 or p =3 and dim(V) =2

Then exactly one of the following is true:

(a) all summands of V®" are non-negligible for all n

(b) exactly one summand of each V®" is non-negligible for all n

Define d/,(V) = total dimension of non-negligible summands in V®"
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r (p|V[dm(V)|~vV)]| V) dn(V) note
Z/SZ|5 || 3 |15 1S Fr — ci(V)
Z/8Z|2|Js| 5 3 1 1
Z/9Z |3 | Js 5 3 2 [ 1™+ (=1)") | = da(Ws,)

Ws, - 2-dimensional representation of S3 over C

Assume p =2 and dim(V) =3 or p =3 and dim(V) =2

Then exactly one of the following is true:

(a) all summands of V®" are non-negligible for all n

(b) exactly one summand of each V®" is non-negligible for all n

Define d/,(V) = total dimension of non-negligible summands in V®"
and &'(V) := limpse0 W/ dA(V)
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r (p|V[dm(V)|~vV)]| V) dn(V) note
Z/SZ|5 || 3 |15 1S Fr — ci(V)
Z/8Z|2|Js| 5 3 1 1
Z/9Z |3 | Js 5 3 2 [ 1™+ (=1)") | = da(Ws,)

Ws, - 2-dimensional representation of S3 over C

Assume p =2 and dim(V) =3 or p =3 and dim(V) =2
Then exactly one of the following is true:

(a) all summands of V®" are non-negligible for all n
(b) exactly one summand of each V®" is non-negligible for all n

Define d/,(V) = total dimension of non-negligible summands in V®"
and &'(V) := limpse0 W/ dA(V)

Question: is §(V) = §'(V) for any V?
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Comments on proof

Assume C is F—linear monoidal category such that Tr is defined
(e.g. any monoidal subcategory of Rep(I))

Semisimplification: new category C

Objects of C = objects of C;
Homgs(X, Y) = Hom(X, Y)/(negligible morphisms)
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Comments on proof

Assume C is F—linear monoidal category such that Tr is defined
(e.g. any monoidal subcategory of Rep(I))

Semisimplification: new category C

Objects of C = objects of C;
Homgs(X, Y) = Hom(X, Y)/(negligible morphisms)

Fact (D.Benson): Assume C is full Karoubian monoidal subcategory of
Rep(T'). Then C is symmetric tensor abelian semisimple and
{ simple objects of C} <+ { non-negligible indecomposable objects of C}

Corollary: | d,(V) = b,(V)
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Comments on proof

Assume C is F—linear monoidal category such that Tr is defined
(e.g. any monoidal subcategory of Rep(I))

Semisimplification: new category C

Objects of C = objects of C;
Homgs(X, Y) = Hom(X, Y)/(negligible morphisms)

Fact (D.Benson): Assume C is full Karoubian monoidal subcategory of
Rep(T'). Then C is symmetric tensor abelian semisimple and
{ simple objects of C} <+ { non-negligible indecomposable objects of C}

Corollary: | d,(V) = b,(V)

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume D is a semisimple pre-Tannakian category of moderate growth.
Then there exists an additive tensor functor F : D — Verp.
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Comments on proof

Assume C is F—linear monoidal category such that Tr is defined
(e.g. any monoidal subcategory of Rep(I))

Semisimplification: new category C

Objects of C = objects of C;
Homgs(X, Y) = Hom(X, Y)/(negligible morphisms)

Fact (D.Benson): Assume C is full Karoubian monoidal subcategory of
Rep(T'). Then C is symmetric tensor abelian semisimple and
{ simple objects of C} <+ { non-negligible indecomposable objects of C}

Corollary: | d,(V) = b,(V)

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume D is a semisimple pre-Tannakian category of moderate growth.
Then there exists an additive tensor functor F : D — Verp.

Corollary: | d,(V) = FPdim(F(V))
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Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants K', K" > 0 such that

K'8(V)" < dn(V) < K"8(V)"
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Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants K', K" > 0 such that

K'8(V)" < dn(V) < K"8(V)"

In fact we can take K” =1 (elementary) and we prove that for p > 0

() = i 517

>0
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Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants K', K" > 0 such that
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In fact we can take K” =1 (elementary) and we prove that for p > 0
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In fact we can take K” =1 (elementary) and we prove that for p > 0

c(V) = liminf dn( V)

n—o0 (5(\/)” >0

Conjecture: c(V) > e~ 2%(Y) for some a, € Rxo.
This is true for p =2 and p = 3 with

a = 4“;(3) ~ 1.464, a3 =24
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Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants K', K" > 0 such that

K'8(V)" < dn(V) < K"8(V)"

In fact we can take K” =1 (elementary) and we prove that for p > 0

c(V) = liminf dn( V)

n—o0 (5(\/)” >0

Conjecture: c(V) > e~ 2%(Y) for some a, € Rxo.
This is true for p =2 and p = 3 with

a = 4“;(3) ~ 1.464, a3 =24

For p > 5 we have c(V) > exp(—apd(V) — %(z)(p —2)6(V)?)
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Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants K', K" > 0 such that
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c(V) = liminf dn( V)
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Conjecture: c(V) > e~ 2%(Y) for some a, € Rxo.
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Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants K', K" > 0 such that

K'8(V)" < dn(V) < K"8(V)"

In fact we can take K” =1 (elementary) and we prove that for p > 0

c(V) = liminf dn( V)

n—o0 (5(\/)” >0

Conjecture: c(V) > e~ 2%(Y) for some a, € Rxo.
This is true for p =2 and p = 3 with

a = 4“;(3) ~ 1.464, a3 =24

For p > 5 we have ¢(V) > exp(—apd(V) — 7r|n2(2)(p —2)0(V)?)

Corollary: §(V) is finitely computable (finitely many d,(V) are required)
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Thanks for listening!
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