Quantum Groups Seminar

Growth in tensor powers

Victor Ostrik

University of Oregon vostrik@uoregon.edu

March 11

arxiv: 2107.02372, 2301.00885, 2301.09804 (jt with Kevin Coulembier, Pavel Etingof, Daniel Tubbenhauer)

Setup

F – any field;

Setup

F – any field; Γ – any group (or affine group scheme)

Setup

F – any field; Γ – any group (or affine group scheme)

V – any finite dimensional representation of Γ over F

Setup

F – any field; Γ – any group (or affine group scheme)

V – any finite dimensional representation of Γ over F $V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$ (n times)

Setup

```
F – any field; \Gamma – any group (or affine group scheme)
```

V – any finite dimensional representation of Γ over F

$$V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$$
 (*n* times)

$$V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$$
 where W_i are indecomposable Γ -modules

Setup

```
F – any field; \Gamma – any group (or affine group scheme)
```

V – any finite dimensional representation of Γ over F

$$V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$$
 (*n* times)

 $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$ where W_i are indecomposable Γ -modules

Setup

```
F – any field; \Gamma – any group (or affine group scheme)
```

V – any finite dimensional representation of Γ over F

$$V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$$
 (*n* times)

 $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$ where W_i are indecomposable Γ -modules

Setup

```
F – any field; \Gamma – any group (or affine group scheme)
```

V – any finite dimensional representation of Γ over F

$$V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$$
 (*n* times)

$$V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$$
 where W_i are indecomposable Γ -modules

Question: What can we say about sequence $b_n(V)$?

Setup

```
F – any field; \Gamma – any group (or affine group scheme)
```

V – any finite dimensional representation of Γ over F

$$V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$$
 (*n* times)

$$V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$$
 where W_i are indecomposable Γ -modules

Question: What can we say about sequence $b_n(V)$? e.g. its growth?

Setup

F – any field; Γ – any group (or affine group scheme)

V – any finite dimensional representation of Γ over F

 $V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$ (*n* times)

 $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$ where W_i are indecomposable Γ -modules

Question: What can we say about sequence $b_n(V)$? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

$$\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \dim(V)$$

Setup

F – any field; Γ – any group (or affine group scheme)

V – any finite dimensional representation of Γ over F

 $V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$ (*n* times)

 $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$ where W_i are indecomposable Γ -modules

Question: What can we say about sequence $b_n(V)$? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

$$\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \dim(V)$$

Example

 Γ finite, $F = \mathbb{C}$, $M = \max\{\chi(1) \mid \chi - \text{ irreducible complex character}\}$

Setup

F – any field; Γ – any group (or affine group scheme)

V – any finite dimensional representation of Γ over F

$$V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$$
 (*n* times)

 $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$ where W_i are indecomposable Γ -modules

Question: What can we say about sequence $b_n(V)$? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

$$\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \dim(V)$$

Example

 Γ finite, $F = \mathbb{C}$, $M = \max\{\chi(1) \mid \chi - \text{ irreducible complex character}\}$

$$\frac{1}{M}\dim(V)^n \le b_n(V) \le \dim(V^{\otimes n}) = \dim(V)^n$$

Example

 Γ finite, F of characteristic p > 0

Example

 Γ finite, F of characteristic p > 0

Then Γ typically has indecomposable representations of arbitrarily large dimension

Example

 Γ finite, F of characteristic p > 0

Then Γ typically has indecomposable representations of arbitrarily large dimension

However Γ has finitely many projective indecomposable modules (PIMs)

Example

 Γ finite, F of characteristic p > 0

Then Γ typically has indecomposable representations of arbitrarily large dimension

However Γ has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then $V^{\otimes n}$ contain a projective sumand for $n \gg 0$.

Example

 Γ finite, F of characteristic p > 0

Then Γ typically has indecomposable representations of arbitrarily large dimension

However Γ has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then $V^{\otimes n}$ contain a projective sumand for $n \gg 0$.

Corollary Almost all summands of $V^{\otimes n}$ are projective over the image of Γ in GL(V) (i.e. dimension of all non-projective summands in $V^{\otimes n}$ is less than Kr^n where $r < \dim(V)$ and K > 0).

Example

 Γ finite, F of characteristic p > 0

Then Γ typically has indecomposable representations of arbitrarily large dimension

However Γ has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then $V^{\otimes n}$ contain a projective sumand for $n \gg 0$.

Corollary Almost all summands of $V^{\otimes n}$ are projective over the image of Γ in GL(V) (i.e. dimension of all non-projective summands in $V^{\otimes n}$ is less than Kr^n where $r < \dim(V)$ and K > 0).

 $M = \max\{\dim(P) \mid P - PIM \text{ for image of } \Gamma \text{ in } GL(V)\}$

Example

 Γ finite, F of characteristic p > 0

Then Γ typically has indecomposable representations of arbitrarily large dimension

However Γ has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then $V^{\otimes n}$ contain a projective sumand for $n \gg 0$.

Corollary Almost all summands of $V^{\otimes n}$ are projective over the image of Γ in GL(V) (i.e. dimension of all non-projective summands in $V^{\otimes n}$ is less than Kr^n where $r < \dim(V)$ and K > 0).

 $M = \max\{\dim(P) \mid P - PIM \text{ for image of } \Gamma \text{ in } GL(V)\}$

$$\frac{1}{M}(\dim(V)^n - Kr^n) \le b_n(V) \le \dim(V)^n$$

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Example

 $F = \mathbb{C}$, $\Gamma = D_8$, V - 2-dimensional irreducible

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Example

 $F=\mathbb{C},\ \Gamma=D_8,\ V$ - 2-dimensional irreducible $\frac{b_n(V)}{\dim(V)^n}=1$ or $\frac{1}{2}$ depending on parity of n

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Example

 $F=\mathbb{C},\ \Gamma=D_8,\ V$ - 2-dimensional irreducible $\frac{b_n(V)}{\dim(V)^n}=1$ or $\frac{1}{2}$ depending on parity of n

However, for Γ finite and F arbitrary we have:

• the sequence $\frac{b_n(V)}{\dim(V)^n}$ has finitely many limit points

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Example

 $F=\mathbb{C},\ \Gamma=D_8,\ V$ - 2-dimensional irreducible $\frac{b_n(V)}{\dim(V)^n}=1$ or $\frac{1}{2}$ depending on parity of n

However, for Γ finite and F arbitrary we have:

- the sequence $\frac{b_n(V)}{\dim(V)^n}$ has finitely many limit points
- all the limit points are positive and depend only on

$$\mathsf{Ker}(V) \subset \mathsf{Ker}(V \otimes V^*) \subset \mathsf{\Gamma}$$

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Example

 $F = \mathbb{C}$, $\Gamma = D_8$, V - 2-dimensional irreducible $\frac{b_n(V)}{\dim(V)^n} = 1$ or $\frac{1}{2}$ depending on parity of n

However, for Γ finite and F arbitrary we have:

- the sequence $\frac{b_n(V)}{\dim(V)^n}$ has finitely many limit points
- all the limit points are positive and depend only on

$$\operatorname{\mathsf{Ker}}(V) \subset \operatorname{\mathsf{Ker}}(V \otimes V^*) \subset \Gamma$$

• there exists $M \in \mathbb{Z}_{>0}$ such that for any $r = 0, 1, \dots M-1$ the subsequence $\{\frac{b_n(V)}{\dim(V)^n}\}_{n \equiv r \pmod{M}}$ converges

Example

 $F=\mathbb{C}$, $\Gamma=SL(2)$, V – tautological 2-dimensional representation

Example

$$F=\mathbb{C},\ \Gamma=SL(2),\ V$$
 – tautological 2-dimensional representation $\mathrm{ch}(V)=q+q^{-1},\ \mathrm{ch}(V^{\otimes n})=(q+q^{-1})^n$

Example

$$F = \mathbb{C}$$
, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $ch(V) = q + q^{-1}$, $ch(V^{\otimes n}) = (q + q^{-1})^n$

$$b_n(V) = \binom{n}{\left[\frac{n}{2}\right]} \sim \frac{2^n}{\sqrt{\pi n/2}} = \sqrt{\frac{2}{\pi}} \frac{\dim(V)^n}{n^{1/2}}$$

Example

$$F=\mathbb{C},\ \Gamma=SL(2),\ V$$
 – tautological 2-dimensional representation $\mathrm{ch}(V)=q+q^{-1},\ \mathrm{ch}(V^{\otimes n})=(q+q^{-1})^n$

$$b_n(V) = \binom{n}{\left[\frac{n}{2}\right]} \sim \frac{2^n}{\sqrt{\pi n/2}} = \sqrt{\frac{2}{\pi}} \frac{\dim(V)^n}{n^{1/2}}$$

Example

 $F=\mathbb{C},\ \Gamma=\mathit{SL}(2),\ V_2$ – irreducible 3-dimensional representation

Example

$$F=\mathbb{C},\ \Gamma=SL(2),\ V$$
 – tautological 2-dimensional representation $\mathrm{ch}(V)=q+q^{-1},\ \mathrm{ch}(V^{\otimes n})=(q+q^{-1})^n$

$$b_n(V) = \binom{n}{\left[\frac{n}{2}\right]} \sim \frac{2^n}{\sqrt{\pi n/2}} = \sqrt{\frac{2}{\pi}} \frac{\dim(V)^n}{n^{1/2}}$$

Example

$$F=\mathbb{C},\ \Gamma=SL(2),\ V_2$$
 – irreducible 3-dimensional representation $\mathrm{ch}(V_2)=q^2+1+q^{-2},\ \mathrm{ch}(V_2^{\otimes n})=(q^2+1+q^{-2})^n$

Example

 $F=\mathbb{C},\ \Gamma=SL(2),\ V$ – tautological 2-dimensional representation $\mathrm{ch}(V)=q+q^{-1},\ \mathrm{ch}(V^{\otimes n})=(q+q^{-1})^n$

$$b_n(V) = \binom{n}{\left[\frac{n}{2}\right]} \sim \frac{2^n}{\sqrt{\pi n/2}} = \sqrt{\frac{2}{\pi}} \frac{\dim(V)^n}{n^{1/2}}$$

Example

 $F=\mathbb{C},\ \Gamma=SL(2),\ V_2$ – irreducible 3-dimensional representation $\mathrm{ch}(V_2)=q^2+1+q^{-2},\ \mathrm{ch}(V_2^{\otimes n})=(q^2+1+q^{-2})^n$

$$b_n(V_2) = \text{free term of } (q^2 + 1 + q^{-2})^n \sim K \frac{3^n}{n^{1/2}} \text{ (CLT)}$$

Example

$$F=\mathbb{C},\ \Gamma=SL(2),\ V$$
 – tautological 2-dimensional representation $\mathrm{ch}(V)=q+q^{-1},\ \mathrm{ch}(V^{\otimes n})=(q+q^{-1})^n$

$$b_n(V) = \binom{n}{\left[\frac{n}{2}\right]} \sim \frac{2^n}{\sqrt{\pi n/2}} = \sqrt{\frac{2}{\pi}} \frac{\dim(V)^n}{n^{1/2}}$$

Example

$$F=\mathbb{C},\ \Gamma=SL(2),\ V_2$$
 – irreducible 3-dimensional representation $\mathrm{ch}(V_2)=q^2+1+q^{-2},\ \mathrm{ch}(V_2^{\otimes n})=(q^2+1+q^{-2})^n$

$$b_n(V_2) = \text{free term of } (q^2 + 1 + q^{-2})^n \sim K \frac{3^n}{n^{1/2}} \text{ (CLT)}$$

Generalization (P. Biane (1993) et al):

 Γ reductive over $F=\mathbb{C}$: $b_n(V)\sim K(V)rac{\dim(V)^n}{n^{b/2}}$ where $b=|R_+|$ integer

Example

Assume (a) $F = \mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus $(\simeq (\mathbb{C}^*)^n)$

Growth knows about Γ

Example

Assume (a) $F = \mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus ($\simeq (\mathbb{C}^*)^n$) Representations of Γ are completely reducible

Growth knows about Γ

Example

Assume (a) $F = \mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus $(\simeq (\mathbb{C}^*)^n)$ Representations of Γ are completely reducible If V is irreducible then $\dim(V) \leq |\pi_0(\Gamma)|$ (Frobenius reciprocity)

Example

Assume (a) $F=\mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus $(\simeq (\mathbb{C}^*)^n)$ Representations of Γ are completely reducible If V is irreducible then $\dim(V) \leq |\pi_0(\Gamma)|$ (Frobenius reciprocity) Hence $b_n(V) \geq \frac{1}{|\pi_0(\Gamma)|} \dim(V)^n$

Example

Assume (a) $F = \mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus $(\simeq (\mathbb{C}^*)^n)$ Representations of Γ are completely reducible If V is irreducible then $\dim(V) \leq |\pi_0(\Gamma)|$ (Frobenius reciprocity) Hence $b_n(V) \geq \frac{1}{|\pi_0(\Gamma)|} \dim(V)^n$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F=0 and there is K>0 such that $b_n(V)\geq K\dim(V)^n$. Then Zariski closure of the image of Γ in GL(V) is a finite group extended by torus. Equivalently, $\Gamma\supset\Gamma_0$ such that $[\Gamma:\Gamma_0]<\infty$ and the image of Γ_0 consists of simultaneously diagonalizable matrices.

Example

Assume (a) $F = \mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus ($\simeq (\mathbb{C}^*)^n$) Representations of Γ are completely reducible If V is irreducible then $\dim(V) \leq |\pi_0(\Gamma)|$ (Frobenius reciprocity) Hence $b_n(V) \geq \frac{1}{|\pi_0(\Gamma)|} \dim(V)^n$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F=0 and there is K>0 such that $b_n(V)\geq K\dim(V)^n$. Then Zariski closure of the image of Γ in GL(V) is a finite group extended by torus. Equivalently, $\Gamma\supset\Gamma_0$ such that $[\Gamma:\Gamma_0]<\infty$ and the image of Γ_0 consists of simultaneously diagonalizable matrices.

This can be improved: the inequality $b_n(V) \geq K \dim(V)^n$ can be replaced by $b_n(V) \geq K \frac{\dim(V)^n}{n^{\alpha}}$ for any $\alpha < \frac{1}{2}$.

Example

Assume (a) $F = \mathbb{C}$ (b) Γ is algebraic group and Γ_0 is a torus $(\simeq (\mathbb{C}^*)^n)$ Representations of Γ are completely reducible If V is irreducible then $\dim(V) \leq |\pi_0(\Gamma)|$ (Frobenius reciprocity) Hence $b_n(V) \geq \frac{1}{|\pi_0(\Gamma)|} \dim(V)^n$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F=0 and there is K>0 such that $b_n(V)\geq K\dim(V)^n$. Then Zariski closure of the image of Γ in GL(V) is a finite group extended by torus. Equivalently, $\Gamma\supset\Gamma_0$ such that $[\Gamma:\Gamma_0]<\infty$ and the image of Γ_0 consists of simultaneously diagonalizable matrices.

This can be improved: the inequality $b_n(V) \ge K \dim(V)^n$ can be replaced by $b_n(V) \ge K \frac{\dim(V)^n}{n^{\alpha}}$ for any $\alpha < \frac{1}{2}$.

Question: What about char F > 0?

Example

char F=p>0, $\Gamma=SL(2)$, V – tautological 2-dimensional representation

Example

char F=p>0, $\Gamma=SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ – direct sum of tilting SL(2)—modules

Example

char F=p>0, $\Gamma=SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)—modules H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ – direct sum of tilting SL(2) –modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K'\frac{2^n}{n^{\alpha_p}} \leq b_n(V) \leq K''\frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0

where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ – direct sum of tilting SL(2) – modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$ Numerically: $K'\frac{2^n}{n^{\alpha_p}} \leq b_n(V) \leq K''\frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0 where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Example

char F=p>0, $\Gamma=SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K'\frac{2^n}{n^{\alpha_p}} \leq b_n(V) \leq K''\frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0 where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

$$\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}$$

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)-modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

$$\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}$$

$$\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3} \qquad \qquad \boxed{\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}}$$

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)-modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

$$\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}$$

$$\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}$$

$$\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}$$

$$\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}$$

$$\alpha_p = \frac{1}{2} \log_p \frac{2p^2}{p+1}$$

Example

char F=p>0, $\Gamma=SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)—modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K'\frac{2^n}{n^{\alpha_p}} \leq b_n(V) \leq K''\frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0 where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Conjecture (P. Etingof): $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some K', K'' > 0

$$\boxed{\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}} \qquad \boxed{\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}} \qquad \boxed{\alpha_p = \frac{1}{2} \log_p \frac{2p^2}{p+1}}$$

however $b_n(V) \not\sim K \frac{2^n}{n^{\alpha_p}}$

Example

char F=p>0, $\Gamma=SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2) –modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K'\frac{2^n}{n^{\alpha_p}} \leq b_n(V) \leq K''\frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0 where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Conjecture (P. Etingof): $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some K', K'' > 0

$$\boxed{\alpha_2 = \frac{1}{2}\log_2\frac{8}{3}} \qquad \boxed{\alpha_3 = \frac{1}{2}\log_3\frac{9}{2}} \qquad \boxed{\alpha_p = \frac{1}{2}\log_p\frac{2p^2}{p+1}}$$

however $b_n(V) \not\sim K \frac{2^n}{n^{\alpha_p}}$

Question: What about other representations of SL(2)?

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)-modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Conjecture (P. Etingof):
$$K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le \underline{K'' \frac{2^n}{n^{\alpha_p}}}$$
 for some $K', K'' > 0$

$$\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}$$

$$\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}$$

$$\boxed{\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}} \qquad \boxed{\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}} \qquad \boxed{\alpha_p = \frac{1}{2} \log_p \frac{2p^2}{p+1}}$$

however $b_n(V) \nsim K_{\frac{2^n}{n^{\alpha_n}}}$

Question: What about other representations of SL(2)? Is the exponent α_p universal?

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)-modules

H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$

Numerically: $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Conjecture (P. Etingof): $K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$ for some K', K'' > 0

$$\boxed{\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}} \qquad \boxed{\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}} \qquad \boxed{\alpha_p = \frac{1}{2} \log_p \frac{2p^2}{p+1}}$$

however $b_n(V) \nsim K_{\frac{2^n}{n^{\alpha_n}}}$

Question: What about other representations of SL(2)?

Is the exponent α_p universal?

Question What about other groups? e.g. SL(3)?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$ Hence we can assume $\Gamma = GL(V)$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$ Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$ Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!) **Step 2:** GL(V)—module $V^{\otimes n}$ is a direct sum of <u>tilting</u> modules, so it is determined by its character

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$

Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Step 2: GL(V)—module $V^{\otimes n}$ is a direct sum of <u>tilting</u> modules, so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for $\dim(V) \geq 3$ (conjecture by Lusztig-Williamson for $\dim(V) = 3$)

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$

Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Step 2: GL(V)—module $V^{\otimes n}$ is a direct sum of <u>tilting</u> modules, so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for $\dim(V) \geq 3$ (conjecture by Lusztig-Williamson for $\dim(V) = 3$)

Use partial information (block of Steinberg module)...

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$

Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Step 2: GL(V)—module $V^{\otimes n}$ is a direct sum of <u>tilting</u> modules, so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for $\dim(V) \geq 3$ (conjecture by Lusztig-Williamson for $\dim(V) = 3$)

Use partial information (block of Steinberg module)...

Remark: Γ can be Lie algebra, semigroup, super group or super Lie algebra, quantum group at root of 1

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$

Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Step 2: GL(V)—module $V^{\otimes n}$ is a direct sum of <u>tilting</u> modules, so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for $\dim(V) \geq 3$ (conjecture by Lusztig-Williamson for $\dim(V) = 3$)

Use partial information (block of Steinberg module)...

Remark: Γ can be Lie algebra, semigroup, super group or super Lie algebra, quantum group at root of 1

Also V can be an object of a $Tannakian\ category$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$

Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Step 2: GL(V)—module $V^{\otimes n}$ is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for $\dim(V) \geq 3$ (conjecture by Lusztig-Williamson for $\dim(V) = 3$)

Use partial information (block of Steinberg module)...

Remark: Γ can be *Lie algebra*, *semigroup*, *super group* or *super Lie* algebra, quantum group at root of 1

Also V can be an object of a Tannakian category

Warning: counterexamples for comodules over Hopf algebras

Other counts: non-projective summands

D. Benson, P. Symonds: Γ finite, char F = p > 0

Other counts: non-projective summands

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) = ext{total dimension of non-projective summands in } V^{\otimes n}$

Other counts: non-projective summands

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) = ext{total dimension of non-projective summands in } V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

The limit exists! but difficult to compute...

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- \bullet $\gamma(V)$ is not necessarily an integer

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ in general

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ in general
- $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ in general
- $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general

Consider $c'_n(V) = \text{number}$ of non-projective summands in $V^{\otimes n}$

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ in general
- $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general

Consider $c_n'(V) = \text{number}$ of non-projective summands in $V^{\otimes n}$ and define $\gamma'(V) = \lim_{n \to \infty} \sqrt[n]{c_n'(V)}$

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- \bullet $\gamma(V)$ is not necessarily an integer
- $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ in general
- $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general

Consider $c_n'(V) = \text{number}$ of non-projective summands in $V^{\otimes n}$ and define $\gamma'(V) = \lim_{n \to \infty} \sqrt[n]{c_n'(V)}$

• Open True/False question: is $\gamma(V) = \gamma'(V)$ for all V?

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

 J_1 is trivial and the only simple

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

 J_1 is trivial and the only simple J_5 is the only projective

Tensor products: $J_1 \otimes J_i = J_i$ $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take
$$V = J_3$$
 and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take
$$V = J_3$$
 and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence
$$B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$$
 (Fibonacci number)

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take
$$V = J_3$$
 and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence
$$B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$$
 (Fibonacci number) and $c_n(V) = A_n + 3B_n = B_{n+2} + B_n$ (Lucas number)

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \operatorname{Id} \Leftrightarrow (A - \operatorname{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take
$$V = J_3$$
 and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence
$$B_{n+1}=B_{n-1}+B_n=F_n=c_n'(V)$$
 (Fibonacci number) and $c_n(V)=A_n+3B_n=B_{n+2}+B_n$ (Lucas number) $\Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}$

 $\Gamma=\mathbb{Z}/5\mathbb{Z}$, p=5, representation: $1\mapsto A,\ A^5=\operatorname{Id}\Leftrightarrow (A-\operatorname{Id})^5=0$ Indecomposable representations: Jordan cells J_1,J_2,J_3,J_4,J_5

$$J_3: 1 \mapsto \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take
$$V = J_3$$
 and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence
$$B_{n+1}=B_{n-1}+B_n=F_n=c_n'(V)$$
 (Fibonacci number) and $c_n(V)=A_n+3B_n=B_{n+2}+B_n$ (Lucas number) $\Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}=\delta(V)$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \mathrm{Id} \Leftrightarrow (A - \mathrm{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right)$$

 J_1 is trivial and the only simple J_5 is the only projective

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take
$$V = J_3$$
 and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence
$$B_{n+1}=B_{n-1}+B_n=F_n=c_n'(V)$$
 (Fibonacci number) and $c_n(V)=A_n+3B_n=B_{n+2}+B_n$ (Lucas number) $\Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}=\delta(V)$

Exercise. Compute $\gamma(J_2)$ and $\gamma(J_4)$ (of course $\gamma(J_1)=1$ and $\gamma(J_5)=0$)

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V)={\sf total}\ {\sf number}\ {\sf of}\ {\sf summands}\ W_i\ {\sf in}\ V^{\otimes n}\ {\sf with}\ {\sf dim}(W_i)
eq 0\in F$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V)={\sf total}\ {\sf number}\ {\sf of}\ {\sf summands}\ W_i\ {\sf in}\ V^{\otimes n}\ {\sf with}\ {\sf dim}(W_i)
eq 0\in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V)={\sf total}$ number of summands W_i in $V^{\otimes n}$ with ${\sf dim}(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$ exists

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V)={\sf total}$ number of summands W_i in $V^{\otimes n}$ with ${\sf dim}(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\left| \delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)} \right|$ exists

W – <u>indecomposable</u> representation of a group Γ (or super group scheme)

Assume F is algebraically closed, char $F=p\geq 0,\ V^{\otimes n}=\bigoplus_{i=1}^{b_n(V)}W_i$

 $d_n(V)={\sf total}$ number of summands W_i in $V^{\otimes n}$ with ${\sf dim}(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\left| \delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)} \right|$ exists

 $W - \underline{\text{indecomposable}}$ representation of a group Γ (or super group scheme)

Definition

W is negligible if $dim(W) = 0 \in F$ (take sdim(W) for super groups)

Assume F is algebraically closed, char $F=p\geq 0$, $V^{\otimes n}=igoplus_{i=1}^{b_n(V)}W_i$

 $d_n(V)={\sf total}$ number of summands W_i in $V^{\otimes n}$ with $\dim(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\left| \delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)} \right|$ exists

W – <u>indecomposable</u> representation of a group Γ (or super group scheme)

Definition

W is negligible if $\dim(W) = 0 \in F$ (take $\mathrm{sdim}(W)$ for super groups) W is non-negligible if $\dim(W) \neq 0 \in F$

Assume F is algebraically closed, char $F=p\geq 0$, $V^{\otimes n}=igoplus_{i=1}^{b_n(V)}W_i$

 $d_n(V)=$ total number of summands W_i in $V^{\otimes n}$ with $\dim(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\left| \delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)} \right|$ exists

 $W - \underline{\text{indecomposable}}$ representation of a group Γ (or super group scheme)

Definition

W is negligible if $\dim(W) = 0 \in F$ (take $\mathrm{sdim}(W)$ for super groups) W is non-negligible if $\dim(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible

Assume F is algebraically closed, char $F=p\geq 0$, $V^{\otimes n}=igoplus_{i=1}^{b_n(V)}W_i$

$$d_n(V)={\sf total}$$
 number of summands W_i in $V^{\otimes n}$ with $\dim(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\left| \delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)} \right|$ exists

 $W - \underline{\text{indecomposable}}$ representation of a group Γ (or super group scheme)

Definition

W is negligible if $\dim(W) = 0 \in F$ (take $\mathrm{sdim}(W)$ for super groups) W is non-negligible if $\dim(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal

Assume F is algebraically closed, char $F=p\geq 0$, $V^{\otimes n}=igoplus_{i=1}^{b_n(V)}W_i$

$$d_n(V)=$$
 total number of summands W_i in $V^{\otimes n}$ with $\dim(W_i)
eq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that $\left| \delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)} \right|$ exists

W – <u>indecomposable</u> representation of a group Γ (or super group scheme)

Definition

W is negligible if $\dim(W) = 0 \in F$ (take sdim(W) for super groups) W is non-negligible if $\dim(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal $d_n(V) = \text{total number of } \underline{\text{non-negligible}} \text{ summands in } V^{\otimes n}$

Properties of δ

Obvious properties:

• $\delta(V \oplus W) \ge \delta(V) + \delta(W)$

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$.

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

- 1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$.
- 2. Let $q = q_p = e^{\frac{\pi i}{p}}$ and $[m]_q := \frac{q^m q^{-m}}{q q^{-1}} = q^{m-1} + \ldots + q^{1-m}$ for $m \in \mathbb{N}$.

Then $\delta(V) = \text{linear combination of } [m]_q, 1 \le m \le \frac{p}{2} \text{ with nonnegative integer coefficients.}$

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

- 1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$.
- 2. Let $q=q_p=\mathrm{e}^{\frac{\pi i}{p}}$ and $[m]_q:=\frac{q^m-q^{-m}}{q-q^{-1}}=q^{m-1}+\ldots+q^{1-m}$ for $m\in\mathbb{N}.$

Then $\delta(V) = \text{linear combination of } [m]_q, 1 \le m \le \frac{p}{2} \text{ with nonnegative integer coefficients.}$

Example

For p=2 or p=3 we say that $\delta(V)\in\mathbb{Z}_{\geq 0}$

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

- 1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$.
- 2. Let $q = q_p = e^{\frac{\pi l}{p}}$ and $[m]_q := \frac{q^m q^{-m}}{q q^{-1}} = q^{m-1} + \ldots + q^{1-m}$ for $m \in \mathbb{N}$.

Then $\delta(V) = \text{linear combination of } [m]_q, 1 \leq m \leq \frac{p}{2} \text{ with nonnegative integer coefficients.}$

For
$$p=2$$
 or $p=3$ we say that $\delta(V)\in\mathbb{Z}_{\geq 0}$

For
$$p=5$$
, $\delta(V)=a+b\frac{1+\sqrt{5}}{2}$ where $a,b\in\mathbb{Z}_{\geq 0}$ (since $[2]_{q_5}=\frac{1+\sqrt{5}}{2}$)

Γ	p	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	<i>J</i> ₃	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J ₃	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	<i>J</i> ₃	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	<i>J</i> ₅	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 $W_{\mathcal{S}_3}$ - 2-dimensional representation of \mathcal{S}_3 over $\mathbb C$

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 $W_{\mathcal{S}_3}$ - 2-dimensional representation of \mathcal{S}_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 W_{S_3} - 2-dimensional representation of S_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2Then exactly one of the following is true:

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c_n'(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 $W_{\mathcal{S}_3}$ - 2-dimensional representation of \mathcal{S}_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2

Then exactly one of the following is true:

- (a) all summands of $V^{\otimes n}$ are non-negligible for all n
- (b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c_n'(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 $W_{\mathcal{S}_3}$ - 2-dimensional representation of \mathcal{S}_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2

Then exactly one of the following is true:

- (a) all summands of $V^{\otimes n}$ are non-negligible for all n
- (b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_n'(V) = \text{total } \frac{\text{dimension of } \underline{\text{non-negligible}}}{\text{summands in } V^{\otimes n}}$

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 $W_{\mathcal{S}_3}$ - 2-dimensional representation of \mathcal{S}_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2

Then exactly one of the following is true:

- (a) all summands of $V^{\otimes n}$ are non-negligible for all n
- (b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_n'(V) = \text{total } \frac{\text{dimension of } \underline{\text{non-negligible}}}{\text{and } \delta'(V) := \lim_{n \to \infty} \sqrt[n]{d_n'(V)}}$

Γ	р	V	dim(V)	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$=d_n(W_{S_3})$

 $W_{\mathcal{S}_3}$ - 2-dimensional representation of \mathcal{S}_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2

Then exactly one of the following is true:

- (a) all summands of $V^{\otimes n}$ are non-negligible for all n
- (b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_n'(V)=$ total dimension of non-negligible summands in $V^{\otimes n}$ and $\delta'(V):=\lim_{n\to\infty}\sqrt[n]{d_n'(V)}$

Question: is $\delta(V) = \delta'(V)$ for any V?

Assume C is F-linear monoidal category such that Tr is defined

Assume C is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Assume C is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Semisimplification: new category $\bar{\mathcal{C}}$

Objects of \bar{C} = objects of C;

 $\mathsf{Hom}_{\bar{\mathcal{C}}}(X,Y) = \mathsf{Hom}(X,Y)/(\mathsf{negligible\ morphisms})$

Assume C is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Semisimplification: new category $\bar{\mathcal{C}}$

Objects of $\bar{C} = \text{objects of } C$; $\text{Hom}_{\bar{C}}(X, Y) = \text{Hom}(X, Y)/(\text{negligible morphisms})$

Fact (D.Benson): Assume $\mathcal C$ is full Karoubian monoidal subcategory of Rep(Γ). Then $\bar{\mathcal C}$ is symmetric tensor abelian semisimple and

Assume C is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Semisimplification: new category $\bar{\mathcal{C}}$

```
Objects of \bar{C} = \text{objects of } C;

\text{Hom}_{\bar{C}}(X, Y) = \text{Hom}(X, Y)/(\text{negligible morphisms})
```

Fact (D.Benson): Assume \mathcal{C} is full Karoubian monoidal subcategory of Rep(Γ). Then $\bar{\mathcal{C}}$ is symmetric tensor abelian semisimple and $\{ \text{ simple objects of } \bar{\mathcal{C}} \} \leftrightarrow \{ \text{ non-negligible indecomposable objects of } \mathcal{C} \}$

Assume C is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Semisimplification: new category $\bar{\mathcal{C}}$

Objects of $\bar{C} = \text{objects of } C$; $\text{Hom}_{\bar{C}}(X, Y) = \text{Hom}(X, Y)/(\text{negligible morphisms})$

Fact (D.Benson): Assume \mathcal{C} is full Karoubian monoidal subcategory of Rep(Γ). Then $\bar{\mathcal{C}}$ is symmetric tensor abelian semisimple and $\{\text{ simple objects of } \bar{\mathcal{C}}\} \leftrightarrow \{\text{ non-negligible indecomposable objects of } \mathcal{C}\}$

Corollary: $d_n(V) = b_n(\bar{V})$

Assume C is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Semisimplification: new category \mathcal{C}

Objects of $\bar{\mathcal{C}}$ = objects of \mathcal{C} ; $\operatorname{Hom}_{\bar{c}}(X,Y) = \operatorname{Hom}(X,Y)/(\operatorname{negligible morphisms})$

Fact (D.Benson): Assume \mathcal{C} is full Karoubian monoidal subcategory of Rep(Γ). Then $\bar{\mathcal{C}}$ is symmetric tensor abelian semisimple and $\{ \text{ simple objects of } \bar{\mathcal{C}} \} \leftrightarrow \{ \text{ non-negligible indecomposable objects of } \mathcal{C} \}$ Corollary: $d_n(V) = b_n(\bar{V})$

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \to Ver_n$.

Assume $\mathcal C$ is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $Rep(\Gamma)$)

Semisimplification: new category $\bar{\mathcal{C}}$

Objects of $\bar{C} = \text{objects of } C$; $\text{Hom}_{\bar{C}}(X, Y) = \text{Hom}(X, Y)/(\text{negligible morphisms})$

Fact (D.Benson): Assume \mathcal{C} is full Karoubian monoidal subcategory of Rep(Γ). Then $\bar{\mathcal{C}}$ is symmetric tensor abelian semisimple and $\{\text{ simple objects of } \bar{\mathcal{C}}\} \leftrightarrow \{\text{ non-negligible indecomposable objects of } \mathcal{C}\}$

Corollary: $d_n(V) = b_n(\bar{V})$

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume $\mathcal D$ is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F:\mathcal D\to Ver_p$.

Corollary: $d_n(V) = \mathsf{FPdim}(F(\bar{V}))$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K''=1 (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K'' = 1 (elementary) and we prove that for p > 0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K''=1 (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

This is true for p = 2 and p = 3 with

$$a_2 = \frac{4 \ln(3)}{3} \approx 1.464, \ a_3 = 24$$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K''=1 (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

This is true for p = 2 and p = 3 with

$$a_2 = \frac{4 \ln(3)}{3} \approx 1.464, \ a_3 = 24$$

For $p \geq 5$ we have $c(V) \geq \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2} (p-2) \delta(V)^2)$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K''=1 (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

This is true for p = 2 and p = 3 with

$$a_2 = \frac{4 \ln(3)}{3} \approx 1.464, \ a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2} (p-2) \delta(V)^2)$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K''=1 (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

This is true for p = 2 and p = 3 with

$$a_2 = \frac{4 \ln(3)}{3} \approx 1.464, \ a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2} (p-2) \delta(V)^2)$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$$

In fact we can take K'' = 1 (elementary) and we prove that for p > 0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) > e^{-a_p \delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

This is true for p = 2 and p = 3 with

$$a_2 = \frac{4 \ln(3)}{3} \approx 1.464, \ a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2} (p-2) \delta(V)^2)$

Corollary: $\delta(V)$ is finitely computable (finitely many $d_n(V)$ are required) 15 / 16 Thanks for listening!